This article was downloaded by: [University of Haifa Library]

On: 13 August 2012, At: 20:34 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl20

SnO 2 and SnAcAc Thin Film Sensors Created by Laser

Vladimír Myslík ^a , Filip Vysloužil ^a , Martin Vrňata ^a , Miroslav Jelínek ^b & Ján Lančok ^b

^a Dept. of Solid State Engineering, Institute of Chemical Technology, Prague 6, Czech Republic

b Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague 8, 182 21, Czech Republic

Version of record first published: 29 Oct 2010

To cite this article: Vladimír Myslík, Filip Vysloužil, Martin Vrňata, Miroslav Jelínek & Ján Lančok (2002): SnO 2 and SnAcAc Thin Film Sensors Created by Laser, Molecular Crystals and Liquid Crystals, 374:1, 285-288

To link to this article: http://dx.doi.org/10.1080/713738244

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SnO₂ and SnAcAc Thin Film Sensors Created by Laser

VLADIMÍR MYSLÍK^a, FILIP VYSLOUŽIL^a, MARTIN VRŇATA^a, MIROSLAV JELÍNEK^b and JÁN LANČOK^b

 ^aInstitute of Chemical Technology, Dept. of Solid State Engineering, Prague 6, Czech Republic and
^bInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic

Inorganic and organic tin based thin films were created by pulsed laser deposition (PLD) on special alumina chips. Influence of dopants and catalysts was studied. Sensitivity of Sn- based layers to hydrogen, methanol, ethanol, n- propanol and n- buthanol based layers to was measured.

Keywords:

laser deposition; thin film; gas sensors

1. INTRODUCTION

Development of small toxic gas alarms and sensors for ecology, environmental monitoring, chemistry, etc., is one of the interesting goals on which research in various laboratories is concentrated. The structure usually contains active layers based on organic and inorganic compounds (acetylacetonates and oxides of tin and indium, and materials of similar properties), suitable dopants (materials containing ions- Ni²⁺, Fe³⁺, Cu²⁺ etc.), catalysts (Pt, Pd, Ni, Fe, etc.) and membranes (polytetrafluorethylene and others). The principle of sensors is based on the variations of DC-resistance with changing concentrations of various gases. Such sensors are usually cheaper in comparison with those based on other

detecting mechanisms. They have also small size, simple operation, and low power consumption and can be easily integrated into other devices. In this work the sensitivity and selectivity of SnO₂ and SnAcAc based systems is modified by addition of dopants and catalysts. The Sn-based systems are commonly used for detection of reducing gases. The following responses were studied:

- a) Sn- based systems to 1000 ppm of hydrogen.
- b) Sn- based systems to 1000 ppm of CH₃OH, C₂H₅OH, n-C₃H₇OH and n-C₄H₉OH vapours and 1000 ppm of H₂ for comparison.

2. EXPERIMENTAL

For sensors fabrication small alumina plates having dimensions of 2.5 x 1.5 mm^2 were used in our experiments. On an one side of the plate an interdigital Pt electrodes were created. They serve for reading of sensor response. On the opposite plate side Pt heating element for adjusting of sensor operation temperature was created. For deposition a KrF excimer laser (248 nm wavelength) was used. The sensitivity of active layer was evaluated for temperature of measurement T_m and concentration of detected gas component c_i as a ratio of layer resistance in the air R_{air} and the resistance in the atmosphere containing detected gas at this temperature R_{gas} :

$$S_i(T_m,c_i)=R_{air}(T_m)/R_{gas}(T_m,c_i)$$

The PLD deposition process for Sn- based systems was optimised in recent works [1][2]. The highest sensitivity to reducing atmosphere was obtained for an energy density of about 0.6 Jcm⁻², laser spot 2.5 x 1.5 mm², repetition rate 5 Hz, 5 Pa oxygen deposition background (for SnO₂) and 5 Pa nitrogen background (for SnAcAc).

3. RESULTS AND CONCLUSIONS

a) Response of SnO₂-NiO, SnO₂-NiO-Pd, SnO₂-Fe₂O₃, SnO₂-Fe₂O₃-Pd SnAcAc-FeAcAc, SnAcAc-FeAcAc-Pd_systems to 1000 ppm of hydrogen was studied. The sensitivities reached for various dopant concentrations and addition of catalyst are summarised in Table 1.

Comments to systems a)

• SnAcAc-FeAcAc and SnAcAc-FeAcAc-Pd: The adding of FeAcAc leads to an increase of layer resistance together with improving of

measurement reproducibility. On the contrary it causes a slight increase of T_{max} .

- SnO_2 -NiO and SnO_2 -NiO-Pd: With SnO_2 -NiO-Pd system the highest sensitivity was reached (S_{max} ~ 2820 for 0.1 wt.% of NiO). The sensitivity temperature T_{max} is decreased not only by catalyst, but also by dopant.
- SnO_2 Fe_2O_3 and SnO_2 Fe_2O_3 Pd systems: The addition of Fe_2O_3 to basic material causes the increase of sensitivity together with higher selectivity. Introduction of catalysts reduces T_{max} (up to 380 °C for 1 wt. %).

System		The same of the sa	a - S _{max} ,	b - (T _{max})	
(basic material-					
dopant-catalyst)		0.0 wt.%	0.1 wt.%	1.0 wt.%	10.0 wt.%
SnAcAc-	a	27.5	5.6	5.0	high
FeAcAc	b	$(430^{\circ}C)$	(533°C)	(533°C)	resistance
SnAcAc-	a	174	111	high	high
FeAcAc-Pd	b	(383°C)	(413°C)	resistance	resistance
SnO ₂ -NiO	a	8.8	6.9	8.2	7.2
	b	(485°C)	(444°C)	(430°C)	(443°C)
SnO ₂ -NiO-Pd	a	1093	2820	253	520
	b	(284°C)	(111°C)	(111°C)	(210°C)
SnO ₂ -Fe ₂ O ₃	a	8.8	11.2	13.7	1.8
	b	(485°C)	(476°C)	(485°C)	(340°C)
SnO ₂ -Fe ₂ O ₃ -	a	1093	596	127	1130
Pd	b	(284°C)	(193°C)	(100°C)	(105°C)

Table 1: The maximum sensitivity (S_{max}) to 1000 ppm of hydrogen at the temperature of maximal sensitivity (T_{max}) as a function of different dopant concentration (in wt. %).

b) Response of SnO₂, SnAcAc, SnO₂-Pd, SnAcAc-Pd systems to 1000 ppm of H₂ and CH₃OH, C₂H₅OH, n-C₃H₇OH and n-C₄H₉OH vapours is summarised in Table 2.

Comments to system b)

- \bullet The SnAcAc- based systems are much more influenced by the presence of Pd catalyst than the SnO₂- based ones. The S_{max} of SnAcAc systems increased in the average two times after sputtering the Pd catalyst.
- \bullet The increase of sensitivity is accompanied by decreasing of $\ensuremath{T_{max}}$ at about 50-100 ^{o}C .

- The above mentioned effects were not observed for SnO₂-based systems.
- Considering sample with 4 nm of Pd catalyst, it is noticeable that the decrease of detected gas reactivity (from hydrogen to ethanol) leads to decrease of S_{max} and increase of T_{max} . This sample exhibited T_{max} higher than $600\,^{\circ}\text{C}$ when detecting n-propanol and n-butanol, but the reproducibility of the measurements was rather poor at such high temperatures, so their results were not included. Other samples do not show this effect.

Material		H ₂	CH ₃ OH	C ₂ H ₅ OH	n-C ₃ H ₇ OH	n-C ₄ H ₉ OH
SnAcAc	a	11.0	13.7	22.0	6.0	3.6
	b	(456°C)	(526°C)	(538°C)	(538°C)	(559°C)
SnO ₂	a	5.2	3.8	3.9	3.1	2.8
	b	(577°C)	(572°C)	(424°C)	(550°C)	(596°C)
SnAcAc+	a	35.3	19.4	50.5	71.2	44.5
2 nm Pd	b	(424°C)	(514°C)	(483°C)	(478°C)	(457°C)
SnAcAc+	a	67.6	20.6	19.8	13.5	17.6
4 nm Pd	b	(424°C)	(477°C)	(466°C)	(478°C)	(478°C)
SnO ₂	a	5.3	3.4	2.9	3.3	1.7
+2 nm Pd	b	(351°C)	(478°C)	(558°C)	(393°C)_	(383°C)
SnO ₂ +	a	20.0	7.3	3.8	-	-
4 nm Pd	b	(422°C)	(451°C)	(570°C)		

Table 2: Sensitivity S_{max} (a) of sensor systems to 1000 ppm of hydrogen and alcohol vapors at the temperatures of max. sensitivity T_{max} (b).

4. ACKNOWLEDGEMENT

This work was supported by Grant Agency of the Czech Republic project No.106/99/1437, project of GA ASCR A1010110/01 and by the project LN00A015 of the Ministry of Education of the Czech Republic.

5. REFERENCES

- [1] M. Vrňata, V. Myslík, F. Vysloužil, M. Jelínek, <u>Journal of Electrical Engineering</u> **49**, 340 (1998).
- [2] V. Myslík, M. Vrňata, F. Vysloužil, M. Jelínek, M. Novotná, <u>J. Appl. Polym. Sci.</u> 74, 1614 (1999).